Publicité en cours de chargement...

Publicité en cours de chargement...

L’intelligence artificielle guide une prise en charge plus anticipée et personnalisée de la Covid-19

28 jan. 2021 - 10:48,
Communiqué - GUSTAVE ROUSSY
Une intelligence artificielle (IA), développée en étroite collaboration par les médecins et chercheurs de Gustave Roussy, de l’hôpital Bicêtre – AP-HP, d’Inria et de la start-up Owkin établit un score de gravité des malades atteints de la Covid-19 dès le diagnostic.

Elle permet de prédire leur évolution. Son code, accessible à tous, est publié dans la revue Nature Communications. Déployée dans le service de radiologie de Gustave Roussy depuis un mois, cette IA confirme son utilité en tant qu’aide à la prise en charge clinique des malades de la Covid. La mise en routine clinique de cette IA en 6 mois est un bel exemple d’accélération de la recherche au service des malades en pleine pandémie de Covid.

L’évolution clinique des patients atteints de Covid-19 est très variable et pouvoir anticiper le risque d’aggravation (besoins en oxygène, transfert en réanimation) d’un malade dès le diagnostic est un enjeu important.
L’Intelligence artificielle qui vient d’être installée en routine clinique dans le service de radiologie de Gustave Roussy établit un score indicatif de gravité en intégrant différents paramètres pour prédire l’évolution du malade. Le calcul qui ne prend que deux à trois minutes peut être fourni au médecin en même temps que le compte-rendu de scanner pour chaque patient évalué.
Gradué de 1 (risque très faible) à 5 (risque très élevé), le score met en alerte le praticien et permet d’adapter la surveillance du malade afin d’anticiper une dégradation ; il permet ainsi une prise en charge thérapeutique plus personnalisée des patients atteints de Covid.

 Ce score de gravité a été établi dans le cadre de l’étude ScanCovIA dirigée par la Pr Nathalie Lassau, radiologue à Gustave Roussy et menée en étroite collaboration entre les équipes de Gustave Roussy, l’hôpital Bicêtre – AP-HP, Inria et Owkin.
Cette étude mise sur l’analyse croisée de multiples paramètres cliniques, biologiques et radiologiques par une intelligence artificielle et utilise un outil-clef : le scanner thoracique 3D, qui évalue l’ampleur et la nature des lésions au niveau du thorax et diagnostique les atteintes pulmonaires.

Entrainée puis validée sur plus de 1 000 patients, l’IA basée sur le deep learning a ainsi analysé et combiné simultanément les données hétérogènes issues de scanner 3D, des données cliniques, biologiques ainsi que les antécédents et co-morbidités des patients. Sur 65 paramètres évalués au total, cinq se sont révélés plus particulièrement significatifs dans le calcul du pronostic : la saturation en oxygène, le taux de plaquettes (indice de la fonction médullaire), le taux d’urée (reflet de l’altération de la fonction rénale), l’âge et le sexe.
En combinant ces 5 paramètres et le scanner 3D, l’IA devient capable de calculer de manière précise un score de gravité qui catégorise le malade en fonction de sa probable évolution, son risque de transfert en réanimation, d’avoir besoin d’une assistance respiratoire, etc. Elle permet ainsi de répondre aux questions essentielles dans le cadre d’une prise en charge urgente et d’anticiper les besoins et les options thérapeutiques.

Dans la publication de la revue Nature Communications, un comparatif place l’IA de ScanCovIA comme étant la plus performante parmi 11 études publiées à ce jour. Son code est en open source et peut être utilisé par tous les services d’imagerie en France et dans le monde. 

Cette étude a bénéficié du soutien de donateurs dont Malakoff Humanis.


Source
Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients

Avez-vous apprécié ce contenu ?

A lire également.

ethicovigilance-numerique-premiers-signaux-dalerte-dans-la-sante-connectee

Éthicovigilance numérique : premiers signaux d’alerte dans la santé connectée

24 avril 2025 - 15:14,

Actualité

- DSIH

La Délégation au numérique en santé (DNS) publie le premier rapport d’activité de la Plateforme d’éthicovigilance du numérique en santé, un dispositif inédit lancé fin 2023 pour recueillir les signalements d’usagers et de professionnels confrontés à des enjeux éthiques liés aux technologies de santé...

le-ght-hopitaux-de-provence-optimise-ses-flux-patients-avec-la-solution-m-sesame-de-maincare

Le GHT Hôpitaux de Provence optimise ses flux patients avec la solution M-SESAME de Maincare

24 avril 2025 - 10:06,

Communiqué

- Maincare

Le GHT Hôpitaux de Provence, un des groupements hospitaliers les plus importants de France avec 13 établissements et un bassin de 2 millions d’habitants, a choisi la solution M-SESAME, développée par Atout Majeur Concept, distribuée et intégrée par Maincare, pour répondre à ses besoins en matière de...

le-groupe-softway-medical-accueille-bain-capital-europe-au-sein-de-sa-structure-capitalistique

Le Groupe Softway Medical accueille Bain Capital Europe au sein de sa structure capitalistique

22 avril 2025 - 15:27,

Communiqué

- Groupe Softway Medical

22 avril, 2025 – le Groupe Softway Medical, un leader européen des systèmes d’information en santé, à la fois éditeur, hébergeur et intégrateur pour les établissements de santé publics et privés en France, au Canada et à travers l’Europe, annonce aujourd’hui l’arrivée du fonds de capital-investissem...

lia-en-action-les-conditions-dun-deploiement-reussi-au-sein-des-equipes-de-soins

L’IA en action : les conditions d’un déploiement réussi au sein des équipes de soins

21 avril 2025 - 18:55,

Tribune

- Arnaud HAVE, Directeur Conseil Weliom

L’intégration de l’intelligence artificielle (IA) dans les établissements sanitaires et médico-sociaux représente un défi majeur – à la fois culturel, opérationnel et technique. Pour maximiser les bénéfices concrets de l’IA, les ambitions doivent être alignées sur la maturité de la structure, des éq...

Lettre d'information.

Ne manquez rien de la e-santé et des systèmes d’informations hospitaliers !

Inscrivez-vous à notre lettre d’information hebdomadaire.