Publicité en cours de chargement...

Publicité en cours de chargement...

L’intelligence artificielle guide une prise en charge plus anticipée et personnalisée de la Covid-19

28 jan. 2021 - 10:48,
Communiqué - GUSTAVE ROUSSY
Une intelligence artificielle (IA), développée en étroite collaboration par les médecins et chercheurs de Gustave Roussy, de l’hôpital Bicêtre – AP-HP, d’Inria et de la start-up Owkin établit un score de gravité des malades atteints de la Covid-19 dès le diagnostic.

Elle permet de prédire leur évolution. Son code, accessible à tous, est publié dans la revue Nature Communications. Déployée dans le service de radiologie de Gustave Roussy depuis un mois, cette IA confirme son utilité en tant qu’aide à la prise en charge clinique des malades de la Covid. La mise en routine clinique de cette IA en 6 mois est un bel exemple d’accélération de la recherche au service des malades en pleine pandémie de Covid.

L’évolution clinique des patients atteints de Covid-19 est très variable et pouvoir anticiper le risque d’aggravation (besoins en oxygène, transfert en réanimation) d’un malade dès le diagnostic est un enjeu important.
L’Intelligence artificielle qui vient d’être installée en routine clinique dans le service de radiologie de Gustave Roussy établit un score indicatif de gravité en intégrant différents paramètres pour prédire l’évolution du malade. Le calcul qui ne prend que deux à trois minutes peut être fourni au médecin en même temps que le compte-rendu de scanner pour chaque patient évalué.
Gradué de 1 (risque très faible) à 5 (risque très élevé), le score met en alerte le praticien et permet d’adapter la surveillance du malade afin d’anticiper une dégradation ; il permet ainsi une prise en charge thérapeutique plus personnalisée des patients atteints de Covid.

 Ce score de gravité a été établi dans le cadre de l’étude ScanCovIA dirigée par la Pr Nathalie Lassau, radiologue à Gustave Roussy et menée en étroite collaboration entre les équipes de Gustave Roussy, l’hôpital Bicêtre – AP-HP, Inria et Owkin.
Cette étude mise sur l’analyse croisée de multiples paramètres cliniques, biologiques et radiologiques par une intelligence artificielle et utilise un outil-clef : le scanner thoracique 3D, qui évalue l’ampleur et la nature des lésions au niveau du thorax et diagnostique les atteintes pulmonaires.

Entrainée puis validée sur plus de 1 000 patients, l’IA basée sur le deep learning a ainsi analysé et combiné simultanément les données hétérogènes issues de scanner 3D, des données cliniques, biologiques ainsi que les antécédents et co-morbidités des patients. Sur 65 paramètres évalués au total, cinq se sont révélés plus particulièrement significatifs dans le calcul du pronostic : la saturation en oxygène, le taux de plaquettes (indice de la fonction médullaire), le taux d’urée (reflet de l’altération de la fonction rénale), l’âge et le sexe.
En combinant ces 5 paramètres et le scanner 3D, l’IA devient capable de calculer de manière précise un score de gravité qui catégorise le malade en fonction de sa probable évolution, son risque de transfert en réanimation, d’avoir besoin d’une assistance respiratoire, etc. Elle permet ainsi de répondre aux questions essentielles dans le cadre d’une prise en charge urgente et d’anticiper les besoins et les options thérapeutiques.

Dans la publication de la revue Nature Communications, un comparatif place l’IA de ScanCovIA comme étant la plus performante parmi 11 études publiées à ce jour. Son code est en open source et peut être utilisé par tous les services d’imagerie en France et dans le monde. 

Cette étude a bénéficié du soutien de donateurs dont Malakoff Humanis.


Source
Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients

Avez-vous apprécié ce contenu ?

A lire également.

Illustration Le Health Data Hub sélectionne huit nouveaux projets pour enrichir sa bibliothèque open source d’algorithmes en santé

Le Health Data Hub sélectionne huit nouveaux projets pour enrichir sa bibliothèque open source d’algorithmes en santé

04 juin 2025 - 13:10,

Communiqué

- Le Health Data Hub

À l’occasion de la Journée de l’open science en santé, organisée ce 4 juin 2025 à PariSanté Campus, le Health Data Hub (HDH) annonce les huit lauréats de la 8e vague de son appel à manifestation d’intérêt (AMI) dédié à la Bibliothèque Ouverte d’Algorithmes en Santé (BOAS). Cet appel à projets, lancé...

Illustration MentalTech, vers un Observatoire français de la e-santé mentale

MentalTech, vers un Observatoire français de la e-santé mentale

02 juin 2025 - 22:20,

Actualité

- Damien Dubois, DSIH

Le 21 mai, le collectif MentalTech a annoncé l’arrivée de dix nouveaux membres et dévoilé sa feuille de route 2025 avec pour ambition de s’affirmer comme l’Observatoire de la e-santé mentale.

Illustration Vu à SantExpo 2025 : le CHU d’Amiens obtient l’accord officiel des archives départementales pour son Système d’Archivage Electronique avec la solution HYDMedia de Dedalus

Vu à SantExpo 2025 : le CHU d’Amiens obtient l’accord officiel des archives départementales pour son Système d’Archivage Electronique avec la solution HYDMedia de Dedalus

26 mai 2025 - 15:41,

Actualité

- Pauline Nicolas, DSIH

Lors d’une session au sein de l’auditorium Dedalus, Jacques Delamarre, Responsable Parcours Patient au CHU d’Amiens a témoigné de la genèse qui a conduit à l’adoption de la solution SAE HYDMedia de Dedalus dans son établissement et des principaux apports de cette solution. Un SAE doit intégrer un l...

Illustration L’Académie de l’IA en santé de la FEHAP

L’Académie de l’IA en santé de la FEHAP

26 mai 2025 - 11:27,

Actualité

- Damien Dubois, DSIH

Le 21 mai 2025, lors de SantExpo, la FEHAP a annoncé le déploiement opérationnel de son plan d’actions pour son Académie de l’IA en santé.

Lettre d'information.

Ne manquez rien de la e-santé et des systèmes d’informations hospitaliers !

Inscrivez-vous à notre lettre d’information hebdomadaire.