Publicité en cours de chargement...

Publicité en cours de chargement...

L’intelligence artificielle guide une prise en charge plus anticipée et personnalisée de la Covid-19

28 jan. 2021 - 10:48,
Communiqué - GUSTAVE ROUSSY
Une intelligence artificielle (IA), développée en étroite collaboration par les médecins et chercheurs de Gustave Roussy, de l’hôpital Bicêtre – AP-HP, d’Inria et de la start-up Owkin établit un score de gravité des malades atteints de la Covid-19 dès le diagnostic.

Elle permet de prédire leur évolution. Son code, accessible à tous, est publié dans la revue Nature Communications. Déployée dans le service de radiologie de Gustave Roussy depuis un mois, cette IA confirme son utilité en tant qu’aide à la prise en charge clinique des malades de la Covid. La mise en routine clinique de cette IA en 6 mois est un bel exemple d’accélération de la recherche au service des malades en pleine pandémie de Covid.

L’évolution clinique des patients atteints de Covid-19 est très variable et pouvoir anticiper le risque d’aggravation (besoins en oxygène, transfert en réanimation) d’un malade dès le diagnostic est un enjeu important.
L’Intelligence artificielle qui vient d’être installée en routine clinique dans le service de radiologie de Gustave Roussy établit un score indicatif de gravité en intégrant différents paramètres pour prédire l’évolution du malade. Le calcul qui ne prend que deux à trois minutes peut être fourni au médecin en même temps que le compte-rendu de scanner pour chaque patient évalué.
Gradué de 1 (risque très faible) à 5 (risque très élevé), le score met en alerte le praticien et permet d’adapter la surveillance du malade afin d’anticiper une dégradation ; il permet ainsi une prise en charge thérapeutique plus personnalisée des patients atteints de Covid.

 Ce score de gravité a été établi dans le cadre de l’étude ScanCovIA dirigée par la Pr Nathalie Lassau, radiologue à Gustave Roussy et menée en étroite collaboration entre les équipes de Gustave Roussy, l’hôpital Bicêtre – AP-HP, Inria et Owkin.
Cette étude mise sur l’analyse croisée de multiples paramètres cliniques, biologiques et radiologiques par une intelligence artificielle et utilise un outil-clef : le scanner thoracique 3D, qui évalue l’ampleur et la nature des lésions au niveau du thorax et diagnostique les atteintes pulmonaires.

Entrainée puis validée sur plus de 1 000 patients, l’IA basée sur le deep learning a ainsi analysé et combiné simultanément les données hétérogènes issues de scanner 3D, des données cliniques, biologiques ainsi que les antécédents et co-morbidités des patients. Sur 65 paramètres évalués au total, cinq se sont révélés plus particulièrement significatifs dans le calcul du pronostic : la saturation en oxygène, le taux de plaquettes (indice de la fonction médullaire), le taux d’urée (reflet de l’altération de la fonction rénale), l’âge et le sexe.
En combinant ces 5 paramètres et le scanner 3D, l’IA devient capable de calculer de manière précise un score de gravité qui catégorise le malade en fonction de sa probable évolution, son risque de transfert en réanimation, d’avoir besoin d’une assistance respiratoire, etc. Elle permet ainsi de répondre aux questions essentielles dans le cadre d’une prise en charge urgente et d’anticiper les besoins et les options thérapeutiques.

Dans la publication de la revue Nature Communications, un comparatif place l’IA de ScanCovIA comme étant la plus performante parmi 11 études publiées à ce jour. Son code est en open source et peut être utilisé par tous les services d’imagerie en France et dans le monde. 

Cette étude a bénéficié du soutien de donateurs dont Malakoff Humanis.


Source
Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients

Avez-vous apprécié ce contenu ?

A lire également.

Illustration Conférence Prévention & Longévité  : construire le système de santé de demain

Conférence Prévention & Longévité : construire le système de santé de demain

15 déc. 2025 - 10:39,

Communiqué

- H.B.T Group France

Le jeudi 5 février 2026, la conférence Prévention & Longévité revient à la Maison de la Chimie à Paris pour réunir cliniciens, chercheurs, industriels et décideurs autour d’un enjeu majeur : passer d’un système centré sur le soin à une médecine prédictive, préventive et personnalisée. Porté par un C...

Illustration L’IA et la DeLorean de Doc

L’IA et la DeLorean de Doc

08 déc. 2025 - 21:54,

Tribune

-
Cédric Cartau

L’inconvénient d’être un vieux briscard, c’est que l’on n’est plus étonné, même par les nouvelles belles choses cool hyper-choucardes et tout et tout.

Illustration Stéphanie Rist fusionne recherche, innovation et numérique en une direction unique

Stéphanie Rist fusionne recherche, innovation et numérique en une direction unique

05 déc. 2025 - 17:49,

Actualité

- Rédaction, DSIH

Aux Assises hospitalo-universitaires, la ministre de la Santé Stéphanie Rist a annoncé une réorganisation d’ampleur du ministère, avec la création d’une direction unique dédiée à la recherche, à l’innovation et au numérique en santé. Ce nouveau pilotage, présenté comme un levier de l’« État efficace...

Illustration Digital Omnibus on AI, évolutions et perspectives

Digital Omnibus on AI, évolutions et perspectives

01 déc. 2025 - 21:44,

Tribune

-
Marguerite Brac de La Perrière

Faisant suite à un appel à contributions de la Commission européenne, deux projets de règlements ont été publiés le 19 novembre 2025 par la Commission européenne, bousculant assez substantiellement la réglementation en vigueur : le “Digital Omnibus for the digital acquis" ou "Omnibus numérique" [1] ...

Lettre d'information.

Ne manquez rien de la e-santé et des systèmes d’informations hospitaliers !

Inscrivez-vous à notre lettre d’information hebdomadaire.