Publicité en cours de chargement...
Machine learning : ce qu’il faut en apprendre, ce qu’il faut en attendre
Avec le machine learning, les ordinateurs sont capables d’aller fouiller dans un stock massif de données pour en tirer une valeur ajoutée, sans intervention humaine. Dit autrement,« le machine learning est un ensemble d’algorithmes qui vont analyser des volumes de données quantitatives et qualitatives pour permettre d’établir des conclusions statistiques basées sur les données analysées », explique ITrust, qui propose deux solutions innovantes labellisées France Cybersecurity : IKare, qui permet le monitoring préventif des vulnérabilités sur les systèmes et les infrastructures, ainsi que Reveelium, un outil d’analyse comportementale destiné à lutter contre les APT (Advanced Persistent Threats), les attaques et les virus inconnus.
Qu’advient-il dans le domaine de la sécurité des systèmes d’information ? Associé aux classiques scanners de vulnérabilités, le machine learning va pouvoir « aider les entreprises et organisations à détecter différents types de comportements malveillants qui sembleraient différer des comportements habituels présents sur leur système d’information », précise ITrust. Le machine learning, qui peut faire gagner un temps précieux aux responsables de la sécurité des SI, présente également l’avantage de réduire au minimum les faux positifs. Selon l’expert en cybersécurité, il permet« l’identification précise et efficace des menaces inconnues, à un stade antérieur à celui que l’analyse statique ou comportementale traditionnelle permettrait ».
Comment est-ce possible ? « Si nous analysons les attaques menées jusqu’à aujourd’hui à l’aide de machines (de leur construction à la façon dont l’humain les a pensées), et que nous en analysons les symptômes d’infection “initiale”, il existe 99 % de chances de pouvoir prédire les attaques qui seront menées demain. Cette prédiction sera basée sur la seule partie de l’équation que ces attaques ont en commun : elles ont été menées par un pirate, dont le comportement humain devient alors prédictible grâce aux procédés du machine learning », poursuit ITrust.
Mais attention toutefois à ne pas s’en remettre totalement à ce processus. Le machine learning, capable d’anticiper des attaques et de prédire la manière dont elles seront menées, demeure un outil. Aussi puissant soit-il, il reste une aide à la décision en matière de cybersécurité. « Les résultats doivent être analysés, recherchés et complétés par une expertise humaine pour prendre tout leur sens », conclut Itrust.
Avez-vous apprécié ce contenu ?
A lire également.

Les enjeux de la médecine du futur autour de la data – les multiples ruptures de paradigmes
16 fév. 2026 - 23:02,
Tribune
-Pas de médecine sans donnée : dès lors que le praticien échange avec son patient, dès lors qu’un prélèvement est analysé, des données sont collectées de façon formelle et/ou tracée, qui lui sont indispensables pour la prise en charge. La médecine des prochaines décennies peut être vue et analysée au...

Données de santé et prévention : comment Dell et Infor abordent le passage à l’échelle
16 fév. 2026 - 22:26,
Actualité
- Rédaction, DSIHLors de la conférence Prevention & Longévité organisée le 5 février, une table ronde consacrée aux bilans de prévention et aux données de santé a réuni Dell Technologies, Infor et H.B.T Group France autour d’une question centrale : comment structurer l’accès et l’exploitation des données pour permet...

Quand la prévention devient pilotable : ce que les chercheurs disent vraiment de la médecine de la longévité
16 fév. 2026 - 22:08,
Actualité
- Rédaction, DSIHOrganisée à l’initiative d’Hicham Temsamani, fondateur de H.B.T Group France, et portée par un conseil scientifique présidé par le Pr Fabrice Denis, la conférence Prevention & Longévité du 5 février a donné la parole à des cliniciens et chercheurs engagés dans un même chantier : transformer la préve...

Tech&Fest 2026 : la Healthtech à l’honneur
10 fév. 2026 - 07:17,
Actualité
- Fabrice Deblock, DSIHÀ Grenoble, le salon Tech&Fest a consacré une large place aux technologies de santé, entre démonstrations industrielles, levées de fonds et débats sur la gouvernance des données. Start-ups, industriels et acteurs publics y ont présenté des solutions mêlant robotique médicale, dispositifs connectés e...
