Publicité en cours de chargement...

Publicité en cours de chargement...

Anonymisation : comparatif de trois outils (partie II)

10 mars 2020 - 11:18,
Tribune - Cédric Cartau
Dans un précédent article, nous avons examiné deux solutions d’anonymisation et notamment celle d’Arcad Software.

Le troisième outil est celui de WeData, et je ne vais pas y aller par quatre chemins : dans la vie d’un ingénieur, il y a très peu de moments où l’on est littéralement scotché par les solutions techniques que l’on découvre. Pour ce qui me concerne, la première fois remonte à l’achat de l’extension 16 Ko de mon ZX81, et la dernière au vendredi 17 janvier à 10 h 30, quand l’équipe de WeData m’a déroulé une présentation technique assez précise de leur solution. L’idée est que, même en supprimant les caractères directement identifiants d’une DB (nom, prénom, date de naissance, etc.), il est démontré (voir les travaux de Luc Rocher – https://www.rocher.lc/ –, qui ont fait l’objet d’un précédent article dans les colonnes de DSIH[1]) qu’à partir de six traits il est possible de remonter aux individus dans 95 % des cas (99 % avec sept traits). En gros, les approches classiques algorithmiques ne conviennent plus puisqu’il faudrait brouiller tellement de colonnes que la DB n’aurait plus aucun sens (si on supprime tellement de colonnes de la DB RH qu’à la fin il ne reste plus que les codes postaux des villes de naissance, on ne va pas pouvoir faire grand-chose du résultat).

En substance, WeData a mis au point un algorithme d’avatarisation, qui consiste, pour chaque ligne dans la base (par exemple un patient), à construire un « patient fictif » qui est le patient d’origine pour lequel, pour chaque trait, on a introduit un « bruit » aléatoire. À titre d’illustration, si un fichier contient la taille en centimètres de chaque patient, après avoir supprimé les noms et prénoms, on ajoute 2 cm au premier, 3 cm au deuxième, on enlève 2 cm au troisième, etc. Ces ajouts et retraits sont aléatoires de sorte que si l’on rejoue le film une seconde fois on n’obtiendra pas le même résultat (non-réversibilité du bruit). De plus (et c’est là que c’est fort), les propriétés statistiques du nouvel ensemble de données sont très proches des données d’origine (même courbe de Gauss, mêmes moyennes et écarts types à epsilon près) et le delta entre les deux ensembles de données (l’original et le résultat avatarisé), qui n’est forcément pas nul, est lui-même mathématiquement quantifiable. Mieux encore : les possibilités de réidentification pour un attaquant potentiel qui disposerait de l’ensemble avatarisé sont mathématiquement quantifiables, en fonction des différents paramètres utilisés lors du processus d’avatarisation (et inutile de dire qu’on est sur des queues de pouillèmes). Aucune des solutions décrites dans le précédent volet ne permet à ma connaissance de parvenir à ce résultat.

Bon, en fait, le procédé d’avatarisation est un peu plus complexe, et je laisse le soin à WeData de le décrire dans un article à paraître dans le prochain numéro de DSIH. Reprenons l’exemple d’anonymisation du fichier des adresses des agents de l’établissement, pour lequel l’approche algorithmique consistait à remplacer chaque numéro de la rue par une plage de valeurs. Dans cet exemple, ce type de mesure convient, mais l’approche WeData va plus loin car elle consiste à utiliser une adresse fictive (changement de rue et de numéro à la fois) de telle sorte que la nouvelle adresse transmise ne soit pas suffisamment éloignée de la précédente pour changer le choix de l’emplacement de l’arrêt de bus et à rendre ainsi quasi impossible la réidentification de l’adresse réelle de l’agent. En effet, à moins d’accepter de tourner au hasard pendant des heures dans tout un quartier, vous conviendrez que c’est nettement plus complexe que de remonter une rue du numéro 1 au numéro 50.

La technologie donne le vertige tant ses applications potentielles imaginables sont nombreuses. Par exemple, transmission avatarisée de codification des actes aux commissaires aux comptes dans le cadre de leurs contrôles annuels, transmission de cohortes avatarisées aux internes pour leur thèse, transmission de base avatarisée à un éditeur pour recherche de bug, etc. Si la technologie semble avoir d’abord été mise au point pour le secteur de la recherche, ses applications sont immenses et permettent de résoudre les problèmes de manipulation de grands ensembles de données sensibles (cf. les débats sur l’entrepôt de données de recherche national).

Pour clore le sujet (si tant est que cela soit possible), il faut savoir que la question de l’anonymisation se traite différemment selon au moins trois configurations bien identifiées : celle des grands ensembles de données nominatives (pour lesquels Arcad Software et WeData offrent une réponse valable), celle des données en marge (par exemple un jeu de 100 sages-femmes comprenant un unique individu masculin) et enfin celle des petits ensembles telle la population de patients atteints d’une maladie rare (dans certains cas, moins de 50 dans toute la France). Et, à titre personnel, je serais curieux de savoir si cette technique d’avatarisation conserve les propriétés de la loi de Benford (qui stipule que dans une série de nombres, le chiffre de premier rang – par exemple les milliers – qui apparaît le plus souvent est « 1 », suivi de « 2 », etc.). Si tel est le cas, je prédis un changement radical de la fonction de contrôleur financier.


[1] /article/3568/vous-prendrez-bien-un-peu-de-donnees-personnelles.html 

Avez-vous apprécié ce contenu ?

A lire également.

Illustration MedGPT : le premier assistant IA médical français, alternative à ChatGPT

MedGPT : le premier assistant IA médical français, alternative à ChatGPT

17 sept. 2025 - 08:48,

Actualité

- DSIH

La startup bordelaise Synapse Medicine vient de franchir une étape majeure dans le domaine de la santé numérique avec le lancement de MedGPT, un assistant conversationnel basé sur l’intelligence artificielle et conçu exclusivement pour les professionnels de santé.

Regonfler un pneu ou s’attaquer à la root cause : vision 27001 de la mise sous contrainte

15 sept. 2025 - 22:20,

Tribune

-
Cédric Cartau

Imaginez un peu la scène : vous êtes dans votre jardin en train de tailler vos rosiers, et par-dessus la clôture vous apercevez votre voisin que vous saluez chaleureusement. Vous en profitez pour le prévenir que le pneu arrière gauche de sa voiture, garée dans son allée et que vous voyez très bien d...

Illustration Tour de France CaRE Domaine 2

Tour de France CaRE Domaine 2

13 sept. 2025 - 16:20,

Communiqué

- Orange Cyberdefense

La cybersécurité n’est plus une option pour les établissements de santé ! Grâce au programme CaRE, vous pouvez bénéficier de subventions pour augmenter votre résilience numérique. Orange Cyberdefense vous invite à son Tour de France autour du Domaine 2 du programme CaRE de mi-septembre à mi-octobre.

Illustration CaRE D2 : renforcer la continuité et la reprise d’activité grâce au test du PCRA

CaRE D2 : renforcer la continuité et la reprise d’activité grâce au test du PCRA

08 sept. 2025 - 11:50,

Tribune

-
Manon DALLEAU

Le mois de juillet 2025 a marqué le lancement de CaRE D2, avec pour objectif de renforcer la stratégie de continuité et de reprise d'activité des établissements de santé, aussi bien sur le plan métier que sur le plan informatique. Au cœur du dispositif : le Plan de Continuité et de Reprise d'Activit...

Lettre d'information.

Ne manquez rien de la e-santé et des systèmes d’informations hospitaliers !

Inscrivez-vous à notre lettre d’information hebdomadaire.